
SHA-3 and permutation-based cryptography

Joan Daemen1

Joint work with
Guido Bertoni1, Michaël Peeters2 and Gilles Van Assche1

1STMicroelectronics 2NXP Semiconductors

Crypto summer school
Šibenik, Croatia, June 1-6, 2014

1 / 49

Outline

1 Prologue

2 The sponge construction

3 Keccak and SHA-3

4 Sponge modes of use

5 Block cipher vs permutation

6 Variations on sponge

2 / 49

Prologue

Outline

1 Prologue

2 The sponge construction

3 Keccak and SHA-3

4 Sponge modes of use

5 Block cipher vs permutation

6 Variations on sponge

3 / 49

Prologue

Cryptographic hash functions

Function h from Z∗2 to Zn2
Typical values for n: 128, 160, 256, 512

Pre-image resistant: it shall take 2n effort to
given y, find x such that h(x) = y

2nd pre-image resistance: it shall take 2n effort to
given M and h(M), find another M′ with h(M′) = h(M)

collision resistance: it shall take 2n/2 effort to
find x1 ̸= x2 such that h(x1) = h(x2)

4 / 49

Prologue

Classical way to build hash functions

Mode of use of a compression function:
Fixed-input-length compression function
Merkle-Damgård iterating mode

Property-preserving paradigm
hash function inherits properties of compression function
…actually block cipher with feed-forward (Davies-Meyer)

Compression function built on arithmetic-rotation-XOR: ARX

Instances: MD5, SHA-1, SHA-2 (224, 256, 384, 512) …

5 / 49

The sponge construction

Outline

1 Prologue

2 The sponge construction

3 Keccak and SHA-3

4 Sponge modes of use

5 Block cipher vs permutation

6 Variations on sponge

6 / 49

The sponge construction

Sponge origin: RadioGatún

Initiative to design hash/stream function (late 2005)
rumours about NIST call for hash functions
forming of Keccak Team
starting point: fixing Panama [Daemen, Clapp, FSE 1998]

RadioGatún [Keccak team, NIST 2nd hash workshop 2006]

more conservative than Panama
arbitrary output length
expressing security claim for arbitrary output length function

Sponge functions [Keccak team, Ecrypt hash, 2007]

random sponge instead of random oracle as security goal
sponge construction calling random permutation
… closest thing to a random oracle with a finite state …

7 / 49

The sponge construction

The sponge construction

Generalizes hash function: extendable output function (XOF)
Calls a b-bit permutation f, with b = r+ c

r bits of rate
c bits of capacity (security parameter)

Property-preservation no longer applies
8 / 49

The sponge construction

Generic security: indistinguishability

Success probability of distinguishing between:
ideal function: a monolithic random oracle RO
construction S [F] calling an random permutation F

Adversary D sends queries (M, ℓ) according to algorithm

Express Pr(success|D) as a function of total cost of queries N

Problem: in real world, F is available to adversary

9 / 49

The sponge construction

Generic security: indifferentiability [Maurer et al. (2004)]

Applied to hash functions in [Coron et al. (2005)]

distinguishing mode-of-use from ideal function (RO)
covers adversary with access to permutation F at left
additional interface, covered by a simulator at right

Methodology:
build P that makes left/right distinguishing difficult
prove bound for advantage given this simulator P
P may query RO for acting S-consistently: P [RO]

10 / 49

The sponge construction

Generic security of the sponge construction

Concept of advantage:

Pr(success|D) =
1
2
+

1
2
Adv(D)

Theorem (Bound on the RO-differentiating advantage of sponge)

A ≤ N2

2c+1

A: differentiating advantage of random sponge from random oracle
N: total data complexity
c: capacity
[Keccak team, Eurocrypt 2008]

11 / 49

The sponge construction

Implications of the bound

Let D: n-bit output pre-image attack. Success probability:
for random oracle: Ppre(D|RO) = q2−n

for random sponge: Ppre(D|S [F]) = ?

A distinguisher D with A = Ppre(D|S [F])− Ppre(D|RO)
do pre-image attack
if success, conclude random sponge and RO otherwise

But we have a proven bound A ≤ N2

2c+1 , so

Ppre(D|S [F]) ≤ Ppre(D|RO) +
N2

2c+1

Can be generalized to any attack

Note that A is independent of output length n

12 / 49

The sponge construction

Implications of the bound (cont’d)

Informally, random sponge is like random oracle for N < 2c/2

Security strength for output length n:
collision-resistance: min(c/2, n/2)
first pre-image resistance: min(c/2, n)
second pre-image resistance: min(c/2, n)

Proof assumes f is a random permutation
provably secure against generic attacks
…but not against attacks that exploit specific properties of f

No security against multi-stage adversaries

13 / 49

The sponge construction

A design approach

Hermetic sponge strategy

Instantiate a sponge function

Claim a security level of 2c/2

Remaining task

Design permutation f without exploitable properties

14 / 49

The sponge construction

How to build a strong permutation

Like a block cipher
sequence of identical rounds
round consists of sequence of simple step mappings
many approaches exist, e.g., wide-trail

…but without need for
key schedule
efficient inverse
width b that is power of two

15 / 49

Keccak and SHA-3

Outline

1 Prologue

2 The sponge construction

3 Keccak and SHA-3

4 Sponge modes of use

5 Block cipher vs permutation

6 Variations on sponge

16 / 49

Keccak and SHA-3

Keccak[r, c]

Sponge function using the permutation Keccak-f
7 permutations: b ∈ {25, 50, 100, 200, 400, 800, 1600}
… from toy over lightweight to high-speed …

SHA-3 instance: r = 1088 and c = 512
permutation width: 1600
security strength 256: post-quantum sufficient

Lightweight instance: r = 40 and c = 160
permutation width: 200
security strength 80: what SHA-1 should have offered

See [The Keccak reference] for more details

17 / 49

Keccak and SHA-3

Keccak[r, c]

Sponge function using the permutation Keccak-f
7 permutations: b ∈ {25, 50, 100, 200, 400, 800, 1600}
… from toy over lightweight to high-speed …

SHA-3 instance: r = 1088 and c = 512
permutation width: 1600
security strength 256: post-quantum sufficient

Lightweight instance: r = 40 and c = 160
permutation width: 200
security strength 80: what SHA-1 should have offered

See [The Keccak reference] for more details

17 / 49

Keccak and SHA-3

Keccak[r, c]

Sponge function using the permutation Keccak-f
7 permutations: b ∈ {25, 50, 100, 200, 400, 800, 1600}
… from toy over lightweight to high-speed …

SHA-3 instance: r = 1088 and c = 512
permutation width: 1600
security strength 256: post-quantum sufficient

Lightweight instance: r = 40 and c = 160
permutation width: 200
security strength 80: what SHA-1 should have offered

See [The Keccak reference] for more details

17 / 49

Keccak and SHA-3

The 3-dimensional Keccak-f state

x

y z
state

5× 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)

(5× 5)-bit slices, 2ℓ of them

18 / 49

Keccak and SHA-3

The step mappings of the Keccak-f round function

Keywords: wide-trail, lightweight, symmetry, bit-oriented, margin

19 / 49

Keccak and SHA-3

Performance in software

C/b Algo Strength
4.79 keccakc256treed2 128
4.98 md5 broken! 64
5.89 keccakc512treed2 256
6.09 sha1 broken! 80
8.25 keccakc256 128
10.02 keccakc512 256
13.73 sha512 256
21.66 sha256 128

[eBASH, hydra6 (AMD Bulldozer),

http://bench.cr.yp.to/]

KeccakTree: parallel tree hashing

Speedup thanks to SIMD instructions

20 / 49

http://bench.cr.yp.to/

Keccak and SHA-3

SHA-3 requirements and Keccak final submission

Output Collision Pre-image Keccak Rate Relative
length resistance resistance instance perf.

n = 224 112 224 Keccak[c = 448] 1152 ×1.125
n = 256 128 256 Keccak[c = 512] 1088 ×1.063
n = 384 192 384 Keccak[c = 768] 832 ÷1.231
n = 512 256 512 Keccak[c = 1024] 576 ÷1.778
free up to 288 up to 288 Keccak[c = 576] 1024 1

Output-length oriented approach

These instances address the SHA-3 requirements, but:
security strength levels outside of [NIST SP 800-57] range
performance penalty for high-capacity instances!

21 / 49

Keccak and SHA-3

What we proposed to NIST

Security Capacity Output Coll. Pre. Relative SHA-3
strength length res. res. perf. instance

s ≥ 112 c = 256 n = 224 112 128 ×1.312 SHA3-224
s ≥ 128 c = 256 n = 256 128 128 ×1.312 SHA3-256
s ≥ 192 c = 512 n = 384 192 256 ×1.063 SHA3-384
s ≥ 256 c = 512 n = 512 256 256 ×1.063 SHA3-512
up to 128 c = 256 free up to 128 ×1.312 SHAKE256
up to 256 c = 512 free up to 256 ×1.063 SHAKE512

Security strength oriented approach consistent with [NIST SP 800-57]

Underlying security strength levels reduced to 128 and 256

Strengths 384 and 512: not needed anymore

22 / 49

Keccak and SHA-3

What came out after the controversy

Security Capacity Output Coll. Pre. Relative SHA-3
strength length res. res. perf. instance

s ≥ 224 c = 448 n = 224 112 224 ×1.125 SHA3-224
s ≥ 256 c = 512 n = 256 128 256 ×1.063 SHA3-256
s ≥ 384 c = 768 n = 384 192 384 ÷1.231 SHA3-384
s ≥ 512 c = 1024 n = 512 256 512 ÷1.778 SHA3-512
up to 128 c = 256 free up to 128 ×1.312 SHAKE128
up to 256 c = 512 free up to 256 ×1.063 SHAKE256

Back to square 1 for drop-ins and security-strength oriented for SHAKEs

Animated public discussion on reducing security strength

Unfortunate timing: Snowden revelations on NSA, weaknesses in
Dual EC DRBG

23 / 49

Keccak and SHA-3

FIPS 202 draft

Published Friday, April 4, 2014

Four drop-in replacements identical to 3rd round submission

Two extendable output functions (XOF)

Tree-hashing ready: Sakura coding [Keccak team, ePrint 2013/231]

XOF SHA-2 drop-in replacements
Keccak[c = 256](M||11||11)

⌊Keccak[c = 448](M||01)⌋224
Keccak[c = 512](M||11||11)

⌊Keccak[c = 512](M||01)⌋256
⌊Keccak[c = 768](M||01)⌋384
⌊Keccak[c = 1024](M||01)⌋512

SHAKE128 and SHAKE256 SHA3-224 to SHA3-512

24 / 49

Keccak and SHA-3

Sakura and tree hashing

Sound tree hashing is relatively easy to achieve [Keccak team, ePrint

2009/210 — last updated 2014]

Defining tree hash modes addressing all future use cases is hard
Defining future-proof tree hash coding is easy: Sakura
M||11 actually denotes a single-node tree

25 / 49

Sponge modes of use

Outline

1 Prologue

2 The sponge construction

3 Keccak and SHA-3

4 Sponge modes of use

5 Block cipher vs permutation

6 Variations on sponge

26 / 49

Sponge modes of use

Regular hashing

Salting: just pre- or append salt to message

27 / 49

Sponge modes of use

Mask generation function

output length often dictated by application …
… rather than by security strength level

Key derivation function in SSL, TLS
Full-domain hashing in public key cryptography

electronic signatures RSASSA-PSS [PKCS#1]
encryption RSAES-OAEP [PKCS#1]
key encapsulation methods (KEM)

28 / 49

Sponge modes of use

Message authentication codes

0 f f

Key

…

Padded message

f ff

MAC

Simpler than HMAC [FIPS 198]

Required for SHA-1, SHA-2 due to length extension property
HMAC is no longer needed for sponge!

29 / 49

Sponge modes of use

Stream encryption

0 f f

Key IV

f

Key stream

As a stream cipher
Long output stream per IV: similar to OFB mode
Short output stream per IV: similar to counter mode

30 / 49

Sponge modes of use

Single pass authenticated encryption

0 f f

Key

…

Padded messageIV

f

Key stream

ff

MAC

Authentication and encryption in a single pass!

Secure messaging (SSL/TLS, SSH, IPSEC …)

This is no longer sponge

31 / 49

Sponge modes of use

The duplex construction

Generic security equivalent to Sponge [Keccak team, SAC 2011]

Applications include:
Authenticated encryption: spongeWrap, duplexWrap
Reseedable pseudorandom sequence generator

32 / 49

Sponge modes of use

DuplexWrap layer

DuplexWrap (used in our CAESAR candidate Keyak)
nonce-based authenticated encryption mode;
works on sequences of header-body pairs.

0 A(1)
1 B(1)

C(1) T(1)

A(1) must be unique and secret, e.g.,
A(1) contains a session key used only once;
A(1) contains a key and a nonce.

In general: A(1) = key||nonce||associated data.

33 / 49

Sponge modes of use

DuplexWrap layer

DuplexWrap (used in our CAESAR candidate Keyak)
nonce-based authenticated encryption mode;
works on sequences of header-body pairs.

0 A(1)
1 B(1)

C(1) T(1)

A(1) must be unique and secret, e.g.,
A(1) contains a session key used only once;
A(1) contains a key and a nonce.

In general: A(1) = key||nonce||associated data.

33 / 49

Sponge modes of use

DuplexWrap layer

DuplexWrap (used in our CAESAR candidate Keyak)
nonce-based authenticated encryption mode;
works on sequences of header-body pairs.

0 A(1)
1 B(1)

C(1) T(1)

A(2) B(2)

C(2) T(2)

A(1) must be unique and secret, e.g.,
A(1) contains a session key used only once;
A(1) contains a key and a nonce.

In general: A(1) = key||nonce||associated data.

33 / 49

Sponge modes of use

DuplexWrap layer

DuplexWrap (used in our CAESAR candidate Keyak)
nonce-based authenticated encryption mode;
works on sequences of header-body pairs.

0 A(1)
1 B(1)

C(1) T(1)

A(2) B(2)

C(2) T(2)

A(3)

T(3)

A(1) must be unique and secret, e.g.,
A(1) contains a session key used only once;
A(1) contains a key and a nonce.

In general: A(1) = key||nonce||associated data.

33 / 49

Block cipher vs permutation

Outline

1 Prologue

2 The sponge construction

3 Keccak and SHA-3

4 Sponge modes of use

5 Block cipher vs permutation

6 Variations on sponge

34 / 49

Block cipher vs permutation

Block cipher modes of use

Hashing (in MDX and SHA-X) and its modes HMAC, MGF1, …

Block encryption: ECB, CBC, …
Stream encryption:

synchronous: counter mode, OFB, …
self-synchronizing: CFB

MAC computation: CBC-MAC, C-MAC, …

Authenticated encryption: OCB, GCM, CCM …

Etc.

35 / 49

Block cipher vs permutation

Block cipher modes of use requiring the inverse

Hashing (in MDX and SHA-X) and its modes HMAC, MGF1, …

Block encryption: ECB, CBC, …
Stream encryption:

synchronous: counter mode, OFB, …
self-synchronizing: CFB

MAC computation: CBC-MAC, C-MAC, …

Authenticated encryption: OCB, GCM, CCM …

In many cases you don’t need the inverse

36 / 49

Block cipher vs permutation

Structure of a block cipher

37 / 49

Block cipher vs permutation

Structure of a block cipher (inverse operation)

38 / 49

Block cipher vs permutation

From block cipher to permutation

39 / 49

Block cipher vs permutation

From block cipher to permutation

39 / 49

Block cipher vs permutation

From block cipher to permutation

39 / 49

Block cipher vs permutation

Block cipher vs permutation in keyed modes

Permutation can replace block cipher mode if inverse not needed

Dedicated permutation modes on top of sponge and duplex
Block cipher with n-bit block and k bit key

processes n bits per call
security strength against key retrieval ≤ 2k

computation cost: data path + key schedule
key schedule can be factored out

Permutation with width b
processes r bits per call
security strength against key retrieval ≥ 2c/2

computation cost: full permutation

For equal dimensions b = n+ k: block cipher clearly more efficient

40 / 49

Block cipher vs permutation

Block cipher vs permutation: a closer look

Equal dimensions b = n+ k
Complexity

N (time): number of key guesses
M (data): number of input/output blocks

Permutation: RO-differentiating bound N+M ≥ 2c/2

Key retrieval security:

block cipher permutation
Case N M required c efficiency loss

single target 2k−1 ≥ 1 2k k/n
2a targets 2k−a ≥ 2a 2(k− a) (k− 2a)/n
limit a = k/2 2k/2 ≥ 2k/2 k 0

41 / 49

Block cipher vs permutation

Security of keyed sponge functions

New work building on [Keccak team, On the security of the keyed sponge]

Security strength against distinguishing: min(2c−(a+3), 2k)
With 2a the multiplicity of the data and 1 ≤ 2a ≤ M

2a ≈ M: limit case of very permissive mode and active adversary
2a = 1: e.g., stream encryption with M ≤ 2r/2

Allows reducing capacity, thereby reducing efficiency loss

42 / 49

Variations on sponge

Outline

1 Prologue

2 The sponge construction

3 Keccak and SHA-3

4 Sponge modes of use

5 Block cipher vs permutation

6 Variations on sponge

43 / 49

Variations on sponge

Variations on sponge and duplex

Sponge and duplex are wide-spectrum
Variants can be made

generalization: Parazoa [Andreeva, Mennink, Preneel 2011]
optimized for specific purposes
giving up hermetic sponge approach

Ideas:
different rates during squeezing and absorbing
block encryption: requiring inverse permutation when decrypting
put the key in initial state rather than absorb it
…
see CAESAR (and SHA-3) candidates for examples

Two examples
donkeySponge for fast MACs
monkeyDuplex for authenticated encryption on small platforms

44 / 49

Variations on sponge

MAC: take a look at Pelican [Daemen, Rijmen, 2005]

Block cipher based MAC
based on Rijndael (AES)
permutation-based absorbing

Speed: for long messages:
4 rounds per 128 bits
2.5 times faster than AES

Security rationale
key recovery: block cipher
secret state recovery:

block cipher at the end
hardness of inner collisions
relies on low MDP of AES 4R

security claims with 2a ≤ 260

unbroken as yet

45 / 49

Variations on sponge

The donkeySponge MAC construction

Usage of full state width b during absorbing

Reduced number of rounds during absorbing

Truncated permutation instead of final block cipher

Keccak-f[1600]-based: over 5 times faster than SHAKE256

46 / 49

Variations on sponge

The monkeyDuplex construction

For (authenticated) encryption

Initialization: key, nonce in I followed by strong permutation

strongly reduced number of rounds in step calls

Used in Ketje (CAESAR) with Keccak-f[200] and Keccak-f[400]

47 / 49

Variations on sponge

monkeyDuplex rationale

Initialization
decorrelates states for different nonces
is assumed to rule out differential attacks

Remaining attacks:

state reconstruction: number of rounds to span is
⌈
b−r
r

⌉
nstep

tag forgery: number of rounds to span is nstride

Price paid: in case of nonce re-use all bets are off

48 / 49

Conclusion

Conclusion

Permutation-based cryptography is here to stay!

http://sponge.noekeon.org/
http://keccak.noekeon.org/

49 / 49

http://sponge.noekeon.org/
http://keccak.noekeon.org/

	Prologue
	The sponge construction
	Keccak and SHA-3
	Sponge modes of use
	Block cipher vs permutation
	Variations on sponge

